Here is a list of my research articles. You can also find lists at Inspire and ORCID. The numerical data for some of these articles may be found on Zenodo.

          

 


  
    
  
  
    
  

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
Light dilaton near critical points in top-down holographyFeb. 2025
Daniel Elander, Antón F. Faedo, Maurizio Piai, Ronnie Rodgers, Javier G. Subils
This is a follow up to Light holographic dilatons near critical points, in which we demonstrate the mechanism described in that paper in a model arising from string theory/supergravity.
Conductivities and excitations of a holographic flavour brane Weyl semimetalDec. 2024
Haruki Furukawa, Sacha Ployet, Ronnie Rodgers
In this paper we compute the electrical conductivities of the holographic Weyl semimetal introduced in A Weyl semimetal from AdS/CFT with flavour.
Entanglement Rényi entropies in celestial holographyDec. 2024
Federico Capone, Andy O'Bannon, Ronnie Rodgers, Somyadip Thakur,
We develop a method to compute entanglement entropy and Rényi entropies in the quantum field theory dual to Minkowski space in Celestial Holography.
Light holographic dilatons near critical pointsJun. 2024
Carlos Hoyos, Antón F. Faedo, Maurizio Piai, Ronnie Rodgers, Javier G. Subils
We use holography to demonstrate a mechanism for generating light dilaton states, by approaching a critical point in parameter space at the end of a line of first-order phase transitions.
Nodal-antinodal dichotomy from anisotropic quantum critical continua in holographic modelsDec. 2022
Ronnie Rodgers, Jewel Kumar Ghosh, Alexander Krikun
We use holography to propose a mechanism for generating the "nodal-antinodal dichotomy" that appears in cuprate high-temperature superconductors, based on scaling symmetry.
Boost-invariant superfluid flowsJul. 2022
Ronnie Rodgers, Javier G. Subils
We give exact solutions of relativistic hydrodynamics describing an ideal superfluid, that are invariant under Lorentz boosts in one direction (superfluid Bjorken/Gubser flows). We also give numerical solutions for non-zero shear viscosity.
Thermodynamics and transport of holographic nodal line semimetalsSep. 2021
Ronnie Rodgers, Enea Mauri, Umut Gürsoy, Henk T. C. Stoof
We compute thermodynamic observables, fermion spectral functions, and electrical and thermal conductivities in a holographic model of a nodal line semimetal.
A Weyl semimetal from AdS/CFT with flavourDec. 2020
Kazem Bitaghsir Fadafan, Andy O'Bannon, Ronnie Rodgers, Matthew Russell
We introduce a top-down holographic model of a Weyl semimetal, based on the intersection of D3- and D7-branes.
Holographic entanglement entropy of the Coulomb branchDec. 2020
Adam Chalabi, S. Prem Kumar, Andy O'Bannon, Anton Pribytok, Ronnie Rodgers, Jacopo Sisti
We use holography compute the entanglement entropy of a spherical subregion in N=4 super-Yang-Mills theory on its Coulomb branch, and in the presence of screened Wilson lines or spherically-symmetric solitons.
Holographic Coulomb branch solitons, quasinormal modes, and black holesNov. 2020
S. Prem Kumar, Andy O'Bannon, Anton Pribytok, Ronnie Rodgers
We compute the spectrum of excitations of certain spherically symmetric solitons in N=4 super-Yang-Mills theory. These excitations are qualitatively similar to the quasinormal modes of a black hole.
Holographic Wilson lines as screened impuritiesDec. 2019
Nick Evans, Andy O'Bannon, Ronnie Rodgers
We compute the spectrum of excitations of a screened Wilson line in N=4 super-Yang-Mills theory, demonstrating the presence of quasi-bound states.
From the Weyl Anomaly to Entropy of Two-Dimensional Boundaries and DefectsDec. 2018
Kristan Jensen, Andy O'Bannon, Brandon Robinson, Ronnie Rodgers
We elucidate the relation between the Weyl anomaly and thermal/entanglement entropies in quantum field theories with 2D defects. One of the main results is a formula relating defect contribution to the entanglement entropy of a spherical region to defect Weyl anomaly coefficients. We use this formula, along with entanglement entropy results from holography, to obtain these Weyl anomaly coefficients for two classes of defects in maximally supersymmetric gauge theories.
Wilson Surface Central Charge from Holographic Entanglement EntropyDec. 2018
John Estes, Darya Krym, Andy O'Bannon, Brandon Robinson, Ronnie Rodgers
We compute the contribution to entanglement entropy of a spherical region for defects arising from the intersection between M2- and M5-branes.
Holographic entanglement entropy from probe M-theory branesNov. 2018
Ronnie Rodgers
We compute the contribution to entanglement entropy from Wilson surface defects in six-dimensional N=(2,0) theory. We also study the behaviour of entanglement entropy under defect renormalisation-group flows, investigating the viability of entanglement entropy as a c-function.
Holographic Zero Sound from Spacetime-Filling BranesJul. 2018
Nikola I. Gushterov, Andy O'Bannon, Ronnie Rodgers
We show that the quantum field theory holographically dual to spacetime-filling brane exhibits excitations that behave like zero sound modes of Fermi liquids.
On Holographic Entanglement DensityAug. 2018
Nikola I. Gushterov, Andy O'Bannon, Ronnie Rodgers
We compute entanglement entropy in a number of holographic models of compressible quantum matter.
First law of entanglement rates from holographyDec. 2016
Andy O'Bannon, Jonas Probst, Ronnie Rodgers, Christoph F. Uhlemann
We show that the rate of change of entanglement entropy is proportional to the rate of change of energy density in holographic systems deformed by a linear-in-time source. We demonstrate this law with several examples.